Image of Deep Learning with Python

Text

Deep Learning with Python



Discover the practical aspects of implementing deep-learning solutions using the rich Python ecosystem. This book bridges the gap between the academic state-of-the-art and the industry state-of-the-practice by introducing you to deep learning frameworks such as Keras, Theano, and Caffe. The practicalities of these frameworks is often acquired by practitioners by reading source code, manuals, and posting questions on community forums, which tends to be a slow and a painful process. Deep Learning with Python allows you to ramp up to such practical know-how in a short period of time and focus more on the domain, models, and algorithms. This book briefly covers the mathematical prerequisites and fundamentals of deep learning, making this book a good starting point for software developers who want to get started in deep learning. A brief survey of deep learning architectures is also included. Deep Learning with Python also introduces you to key concepts of automatic differentiation and GPU computation which, while not central to deep learning, are critical when it comes to conducting large scale experiments. You will: Leverage deep learning frameworks in Python namely, Keras, Theano, and Caffe Gain the fundamentals of deep learning with mathematical prerequisites Discover the practical considerations of large scale experiments Take deep learning models to production.


Availability

7067/PUP/2018005.133 CHO d c.1Perpustakaan Universitas PertaminaAvailable
9069/PUP/2019005.133 CHO d c.2Perpustakaan Universitas PertaminaAvailable
9070/PUP/2019005.133 CHO d c.3Perpustakaan Universitas PertaminaAvailable
9071/PUP/2019005.133 CHO d c.4Perpustakaan Universitas PertaminaAvailable

Detail Information

Series Title
-
Call Number
005.133 CHO d
Publisher Manning : New York.,
Collation
xxi, 361 p. : Illust. ; 24 cm
Language
English
ISBN/ISSN
9781617294433
Classification
005.133
Content Type
-
Media Type
-
Carrier Type
-
Edition
-
Subject(s)
Specific Detail Info
-
Statement of Responsibility
Department(s)
-

Other version/related

No other version available




Information


RECORD DETAIL


Back To PreviousXML DetailCite this