
LAPORAN KERJA PRAKTIK

Oleh :
Muhammad Bima Sugihartono
102216034

PROGRAM STUDI TEKNIK MESIN
FAKULTAS TEKNOLOGI INDUSTRI
UNIVERSITAS PERTAMINA
2019
LEMBAR PERSETUJUAN LAPORAN KERJA PRAKTIK

Nama Mahasiswa : Muhammad Bima Sugihartono
Nomor Induk Mahasiswa : 102216034
Program Studi : Teknik Mesin
Fakultas : Teknologi Industri
Tanggal Seminar : 12 September 2019

Jakarta, 16 Desember 2019
MENYETUJUI,

Pembimbing Instansi

[Signature]
Hari Fridana
NIP. 750555

Pembimbing Program Studi

[Signature]
Dr. Eng. Purwo Kadmoro
NIP. 116113
KATA PENGANTAR

Kerja Praktek di PT Pertamina (Persero) Refinery Unit VI Balongan ini merupakan salah satu kewajiban yang harus ditempuh untuk menyelesaikan Mata kuliah Kerja Praktik di Program Studi Teknik Mesin Universitas Pertamina. Laporan ini disusun berdasarkan orientasi di berbagai unit dengan ditunjang oleh data-data dari literatur dan petunjuk serta penjelasan dari operator dan pembimbing.

Tersusunnya laporan kerja praktik ini dapat diselesaikan tidak lepas dari dukungan, bimbingan dan bantuan dari berbagai pihak. Oleh karena itu, dalam kesempatan ini penulis menyampaikan ucapan terima kasih kepada semua pihak yang telah membantu baik selama kegiatan kerja praktik dan selama proses penyusunan laporan.

Oleh karena itu, penulis akan dengan senang hati menerima kritik dan saran yang bersifat membangun, demi perbaikan laporan ini. Akhir kata, penysun berharap semoga laporan ini dapat bermanfaat bagi semua.

Jakarta, September 2019

Muhammad Bima Sugihartono
Daftar Isi

BAB I PENDAHULUAN ... 1
 1.1 Latar Belakang .. 1
 1.2 Tujuan ... 2
 1.3 Tempat dan Waktu Pelaksanaan ... 2
 1.4 Ruang Lingkup .. 2

BAB II PROFIL PERUSAHAAN .. 3
 2.1 Sejarah Singkat PT. PERTAMINA (Persero) RU VI Balongan 3
 2.2 Visi dan Misi PT. PERTAMINA (Persero) RU VI Balongan 4
 2.3 Stationary & Statutory Equipment Inspection Enggineer 4

BAB III KEGIATAN KERJA PRAKTIK .. 5

BAB IV HASIL KERJA PRAKTIK ... 9
 4.1 Tugas Khusus .. 9
 4.2 Analisis Tugas Khusus .. 9
 4.2.1 Spesifikasi Heat Exchanger 11-E-108 ... 9
 4.2.2 Analisis Perpindahan Panas .. 10
 4.2.3 Analisis Korosi ... 13
 4.3 Pembahasan Hasil Analisis Tugas Khusus ... 15

BAB V TINJAUAN TEORITIS ... 23
 5.1 Perpindahan Panas ... 23
 5.2 Heat Exchanger ... 23
 5.3 Klasifikasi Heat Exchanger .. 24
 5.3.1 Klasifikasi Berdasarkan Hubungan Antar Fluida 24
 5.3.2 Klasifikasi Berdasarkan Aliran Fluida dan Distribusi Temperatur 25
 5.3.3 Klasifikasi Berdasarkan Fungsi .. 27
 5.3.4 Klasifikasi Berdasarkan Konstruksi ... 28
 5.4 Korosi .. 29
 5.5 Naphthenic Acid Corosion ... 29
 5.5.1 Material Terdampak NAC ... 29
 5.5.2 Faktor Krisis NAC ... 29

BAB VI KESIMPULAN DAN SARAN .. 31
 5.1 Kesimpulan ... 31
 5.2 Saran ... 31
DAFTAR GAMBAR

Gambar 4.2 Simulasi Perpindahan Panas HE Material chromium steel ASTM A387 grade 5 20
Gambar 4.3 Simulasi Perpindahan Panas HE Material chromium steel ASTM A387 grade 9 20
Gambar 4.4 Simulasi Perpindahan Panas HE Material stainless steel A304 21
Gambar 5.1 Shell and Tube Heat Exchanger 24
Gambar 5.2 Aliran Sejajar (Paralel Flow) 25
Gambar 5.3 Aliran Berlawanan (Counter Flow) 25
Gambar 5.4 Aliran Majemuk (Multipass Flow) 26
DAFTAR TABEL

Tabel 3.1 Daftar Kegiatan Kerja Praktik 5
Tabel 4.1 Data Heat Exchanger 11E108 10
Tabel 4.2 Data Kondisi Heat Exchanger 11-E-108 14
Tabel 5.1 Daftar Material Beserta Nilai Konduktivitas Termalnya 17
BAB I
PENDAHULUAN

1.1 Latar Belakang

Minyak bumi memegang peranan penting bagi kehidupan manusia. Minyak bumi dapat
dikatakan sebagai sumber energi bagi manusia, terutama untuk memenuhi kebutuhan industri
dan transportasi. Perkembangan teknologi di bidang industri dan transportasi mengakibatkan
berkembang pesatnya pertumbuhan ekonomi, pertumbuhan ekonomi tersebut mengakibatkan
terus bertambahnya kebutuhan Bahan Bakar Minyak (BBM). Dengan tingginya jumlah
permintaan BBM maka proses penyediaan BBM pun dituntut harus cepat, tepat dan berada
dalam kualitas terbaik. Hal tersebut dapat terpenuhi dengan penyediaan sarana dan fasilitas
yang baik agar proses penyediaan BBM dapat dilakukan secara optimal.

Pengoperasian dan perawatan komponen mesin pun memegang peranan penting terhadap
proses pengolahan BBM. Semakin baik cara pengoperasian dan cara perawatan komponen mesin
yang digunakan untuk memproses BBM, maka semakin baik, tepat dan cepat pula BBM yang
dihasilkan. Program studi Teknik Mesin merupakan program studi yang sangat relevan untuk
mempelajari serta menganalisa proses pengoperasian dan perawatan komponen mesin yang
digunakan selama proses pengolahan minyak mentah menjadi bahan bakar sehingga diharapkan
akan memberi dampak positif berupa evaluasi dan atau inovasi-inovasi yang dapat membuat
proses pengolahan BBM menjadi lebih baik.

PT. PERTAMINA (Persero) adalah sebuah perusahaan milik negara yang bertugas
mengelola penambangan minyak dan gas bumi di Indonesia. Terdapat beberapa unit penunjang
dalam proses pengolahan minyak mentah salah satunya adalah Pertamina Refinery Unit atau
biasa dikenal dengan Pertamina RU. Pertamina RU merupakan unit PT. PERTAMINA (Persero)
yang bertugas untuk mengolah minyak mentah menjadi produk-produk bahan bakar minyak. PT.
PERTAMINA (Persero) memiliki enam unit pengolahan aktif,yang tersebar di beberapa daerah.

Salah satu unit dengan produksi bahan bakar minyak yang tinggi adalah Pertamina RU VI
Balongan yang memiliki kapasitas unit sekitar 83.000 BPSD merupakan salah satu yang terbesar
di dunia.

Berdasarkan hal tersebut, maka penulis memilih tema kerja praktek “Analisis Pengoperasian
dan Perawatan Komponen Mesin” di PT. PERTAMINA (Persero) RU VI Balongan.
1.2 Tujuan
Adapun tujuan dari kerja praktik adalah sebagai berikut:
1. Mempersiapkan diri menjadi sumber daya manusia yang handal, berkualitas, profesional, serta memiliki kemampuan analisa dan penyelesaian masalah yang baik dalam di dunia industri.
2. Mendapat gambaran, pemahaman serta pengalaman mengenai prinsip kerja, profesionalisme dan budaya yang ada di lapangan sehingga memiliki kesiapan untuk bekerja pada masa mendatang.
3. Meningkatkan kemampuan berpikir kritis dan kreatif serta memperoleh communication skills untuk mengkomunikasikan informasi, ide, masalah dan solusi secara efektif selama kerja praktek.
4. Untuk memenuhi persyaratan lulus mata kuliah Kerja Praktik di Prodi Teknik Mesin Fakultas Teknologi Industri di Universitas Pertamina.

1.3 Tempat dan Waktu Pelaksanaan
Kerja praktek dilaksanakan di PT. PERTAMINA (Persero) Refinery Unit VI yang terletak di Jalan Raya Balongan Kabupaten Indramayu, Jawa Barat pada:
Waktu : 17 Juni 2019 - 16 Agustus 2019
Divisi : Stasionary & Statutory Insp. Engineer

1.4 Ruang Lingkup
Ruang lingkup laporan ini membahas mengenai segi ketahanan terhadap korosi dan segi performa perpindahan panas dari pengaruh perubahan minyak mentah terhadap pemilihan material heat exchanger di PERTAMINA RU VI Balongan, Jawa Barat.
BAB II
PROFIL PERUSAHAAN

2.1 Sejarah Singkat PT. PERTAMINA (Persero) RU VI Balongan

Kilang Balongan dibangun dengan *system project financing* dimana biaya invetasi pembangunannya dibayar dari *revenue* kilang Balongan sendiri dan dari keuntungan Pertamina lainnya. Dengan demikian maka tidak ada dana atau *equity* dari pemerintah yang dimasukkan sebagai penyertaan modal sebagaimana waktu membangun kilang-kilang lainnya sebelum tahun 1990. Oleh karena itu kilang Balongan disebut kilang milik PERTAMINA.

Kilang Balongan adalah merupakan kilang yang dirancang untuk mengolah minyak mentah jenis Duri (80%). Pada tahun 1990-an, *crude* Duri mempunyai harga jual yang relatif rendah karena kualitasnya yang kurang baik sebagai bahan baku kilang. Kualitas yang rendah dari *crude* duri dapat terlihat diantaranya dari kandungan residu yang sangat tinggi mencapai 78%, kandungan logam berat dan karbon serta nitrogen yang juga tinggi. Teknologi kilang yang dimiliki di dalam negeri sebelum adanya kilang Balongan tidak mampu mengolah secara efektif dalam jumlah besar, sementara itu produksi minyak dari lapangan.

Dasar pemikiran didirikannya kilang RU VI Balongan untuk memenuhi permasalahan kebutuhan BBM seperti :

1. Antisipasi kebutuhan produk BBM nasional, regional, dan internasional.
2. Peluang menghasilkan produk dengan nilai tambah tinggi.

Unit RCC ini merupakan unit terpenting di kilang PT Pertamina (Persero) RU VI Balongan, yang mengubah residu (sekitar 62 % dari total *feed*) menjadi minyak ringan yang lebih berharga. Residu yang dihasilkan sangat besar sehingga sangat tidak menguntungkan bila residu tersebut tidak
dimanfaatkan. Kapasitas unit ini yang sekitar 83.000 BPSD merupakan yang terbesar di dunia untuk saat ini. Dengan adanya kilang minyak Balongan, kapasitas produksi kilang minyak domestik menjadi 1.074.300 BPSD. Produksi kilang minyak Balongan berjumlah kurang lebih 34 % dari bahan bakar minyak yang dipasarkan di Jakarta dan sekitarnya.

2.2 Visi dan Misi PT. PERTAMINA (Persero) RU VI Balongan

Visi dan misi PT. PERTAMINA (Persero) RU VI Balongan adalah sebagai berikut.

Visi : Menjadi kilang terkemuka di Asia tahun 2025
Misi :
- “Mengolah crude dan naptha untuk memproduksi BBM, BBK, Residu, NBBM dan Petkim secara tepat jumlah, mutu, waktu dan berorientasi laba serta berdaya saing tingi untuk memenuhi kebutuhan pasar.”
- “Mengoperasikan kilang yang berteknologi maju dan terpadu secara aman, handal, efisien dan berwawasan lingkungan.”
- “Mengelola aset RU VI Balongan secara profesional yang didukung oleh sistem manajemen yang tangguh berdasarkan semangat kebersamaan, keterbukaan dan prinsip saling menguntungkan.”

2.3 Stationary & Statutory Equipment Inspection Enggineer

Stationary & Statutory Equipment Inspection Engineer merupakan bagian dari Maintenance, Planning & Support yang memiliki tugas pokok mengevaluasi kegiatan pemeliharaan serta menunjukkan komitmen HSE dalam setiap aktivitas untuk memberikan jaminan kelayakan operasi peralatan sesuai dengan peraturan pemerintah dan/atau standar & kode serta aspek HSE yang berlaku agar peralatan dapat dioperasikan sesuai jadwal untuk memenuhi target produksi yang direncanakan.
BAB III
KEGIATAN KERJA PRAKTIK

Berikut adalah gambaran mengenai aktivitas yang telah dilakukan selama kegiatan kerja praktik di PT. PERTAMINA (Persero) RU VI Balongan berlangsung yang terlampir pada Tabel 3.1

Tabel 3.1 Daftar Kegiatan Selama Kerja Praktik di PT. PERTAMINA (Persero) RU VI Balongan

<table>
<thead>
<tr>
<th>No</th>
<th>Tanggal</th>
<th>Nama Kegiatan</th>
<th>Keterangan</th>
</tr>
</thead>
<tbody>
<tr>
<td>Minggu ke-1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>17 Juni 2019</td>
<td>Penyelesaian Administrasi Kerja</td>
<td>Penyelesaian administrasi kerja praktik berupa konfirmasi dan pengumpulan</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Praktik</td>
<td>berkas persyaratan di Diklat PT. PERTAMINA (Persero) RU VI Balongan. Serta</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>kegiatan safety induction dan pembuatan ID card sebagai keterangan mahasiswa</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>kerja praktik.</td>
</tr>
<tr>
<td>2</td>
<td>18 Juni 2019</td>
<td>Hari Ke-1 Kegiatan Kerja Praktik</td>
<td>Hari pertama kegiatan kerja praktik berupa perkenalan atau orientasi terhadap</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>pegawai divisi Stationary & Statutory Inspection Engineer.</td>
</tr>
<tr>
<td>4</td>
<td>19 Juni 2019</td>
<td>Hari Ke-2 Kegiatan Kerja Praktik</td>
<td>Overview atau pengenalan proses pengolahan produk-produk PT. PERTAMINA yang</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>diolah di Refinery Unit VI Balongan.</td>
</tr>
<tr>
<td>5</td>
<td>20 Juni 2019</td>
<td>Hari Ke-3 Kegiatan Kerja Praktik</td>
<td>Orientasi daerah kerja PT. PERTAMINA (Persero) RU VI Balongan.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>21 Juni 2019</td>
<td>Hari Ke-4 Kegiatan Kerja Praktik</td>
<td>Pembelajaran materi mengenai boiler baik dari komponen-komponennya dan</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>cara kerjanya.</td>
</tr>
<tr>
<td>Minggu ke-2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>24 Juni 2019</td>
<td>Hari Ke-5 Kegiatan Kerja Praktik</td>
<td>Mengamati dalam kegiatan pemeriksaan / inspeksi pada pipa-pipa yang dianggap</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>akan mengalami kebocoran pada boiler.</td>
</tr>
<tr>
<td>9</td>
<td>26 Juni 2019</td>
<td>Hari Ke-7 Kegiatan Kerja Praktik</td>
<td>Review materi perpindahan panas mengenai Heat Exchanger</td>
</tr>
<tr>
<td>10</td>
<td>27 Juni 2019</td>
<td>Hari Ke-8 Kegiatan Kerja Praktik</td>
<td>Studi literatur kasus-kasus dan berbagai analisis mengenai Heat Exchanger di</td>
</tr>
<tr>
<td>No</td>
<td>Tanggal</td>
<td>Nama Kegiatan</td>
<td>Keterangan</td>
</tr>
<tr>
<td>----</td>
<td>-----------</td>
<td>------------------------</td>
<td>---</td>
</tr>
<tr>
<td>11</td>
<td>28 Juni 2019</td>
<td>Hari Ke-9 Kegiatan Praktik</td>
<td>Studi literatur kasus-kasus dan berbagai analisis mengenai Heat Exchanger di Diklat PT. PERTAMINA (Persero) RU VI Balongan</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Minggu ke-3</td>
</tr>
<tr>
<td>12</td>
<td>1 Juli 2019</td>
<td>Hari Ke-10 Kegiatan Praktik</td>
<td>Pembelajaran simulasi perpindahan panas sederhana pada HE menggunakan software ANSYS</td>
</tr>
<tr>
<td>13</td>
<td>2 Juli 2019</td>
<td>Hari Ke-11 Kegiatan Praktik</td>
<td>Pembelajaran simulasi perpindahan panas sederhana pada HE menggunakan software ANSYS</td>
</tr>
<tr>
<td>14</td>
<td>3 Juli 2019</td>
<td>Hari Ke-12 Kegiatan Praktik</td>
<td>Pembelajaran mengenai drawing heat exchanger 11-E-108 di unit CDU</td>
</tr>
<tr>
<td>15</td>
<td>4 Juli 2019</td>
<td>Hari Ke-13 Kegiatan Praktik</td>
<td>Pembuatan geometry HE pada software solidworks untuk simulasi perpindahan panas</td>
</tr>
<tr>
<td>16</td>
<td>5 Juli 2019</td>
<td>Hari Ke-14 Kegiatan Praktik</td>
<td>Pembuatan geometry HE pada software solidworks untuk simulasi perpindahan panas</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Minggu ke-4</td>
</tr>
<tr>
<td>17</td>
<td>8 Juli 2019</td>
<td>Hari Ke-15 Kegiatan Praktik</td>
<td>Pengambilan data flowrate, temperature masuk dan temperature keluar heat exchanger 11-E-108</td>
</tr>
<tr>
<td>19</td>
<td>10 Juli 2019</td>
<td>Hari Ke-17 Kegiatan Praktik</td>
<td>Diskusi hasil perhitungan dan pembahasan laporan tugas khusus.</td>
</tr>
<tr>
<td>20</td>
<td>11 Juli 2019</td>
<td>Hari Ke-18 Kegiatan Praktik</td>
<td>Pembelajaran mengenai korosi Napthenic Acid Corossion (NAC) berdasarkan referensi API 581</td>
</tr>
<tr>
<td>No</td>
<td>Tanggal</td>
<td>Nama Kegiatan</td>
<td>Keterangan</td>
</tr>
<tr>
<td>----</td>
<td>-----------</td>
<td>--------------------------------</td>
<td>---</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Minggu ke-5</td>
</tr>
<tr>
<td>22</td>
<td>15 Juli 2019</td>
<td>Hari Ke-20 Kegiatan Praktik</td>
<td>Diskusi hasil perhitungan dan pemilihan material material yang akan disarankan untuk penggunaan HE</td>
</tr>
<tr>
<td>23</td>
<td>16 Juli 2019</td>
<td>Hari Ke-21 Kegiatan Praktik</td>
<td>Analisis perhitungan nilai heat transfer dan simulasi nilai temperature akhir HE menggunakan beberapa material yang disarankan</td>
</tr>
<tr>
<td>24</td>
<td>17 Juli 2019</td>
<td>Hari Ke-22 Kegiatan Praktik</td>
<td>Analisis perhitungan laju korosi dan remaining life pada HE jika menggunakan material yang disarankan berdasarkan referensi API 581</td>
</tr>
<tr>
<td>25</td>
<td>18 Juli 2019</td>
<td>Hari Ke-23 Kegiatan Praktik</td>
<td>Diskusi dan bimbingan hasil analisis dan perhitungan tugas khusus</td>
</tr>
<tr>
<td>26</td>
<td>19 Juli 2019</td>
<td>Hari Ke-24 Kegiatan Praktik</td>
<td>Revisi perbaikan simulasi temperature akhir HE pada software ANSYS</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Minggu ke-6</td>
</tr>
<tr>
<td>27</td>
<td>22 Juli 2019</td>
<td>Hari Ke-25 Kegiatan Praktik</td>
<td>Diskusi dan bimbingan hasil perbaikan analisis dan perhitungan tugas khusus</td>
</tr>
<tr>
<td>28</td>
<td>23 Juli 2019</td>
<td>Hari Ke-26 Kegiatan Praktik</td>
<td>Penyusunan laporan tugas khusus kegiatan kerja praktik di diklat PT. PERTAMINA (Persero) RU VI serta bimbingan dengan pembimbing kerja praktik</td>
</tr>
<tr>
<td>29</td>
<td>24 Juli 2019</td>
<td>Hari Ke-27 Kegiatan Praktik</td>
<td>Penyusunan laporan tugas khusus kegiatan kerja praktik di diklat PT. PERTAMINA (Persero) RU VI serta bimbingan dengan pembimbing kerja praktik</td>
</tr>
<tr>
<td>30</td>
<td>25 Juli 2019</td>
<td>Hari Ke-28 Kegiatan Praktik</td>
<td>Penyusunan laporan tugas khusus kegiatan kerja praktik di diklat PT. PERTAMINA (Persero) RU VI serta bimbingan dengan pembimbing kerja praktik</td>
</tr>
<tr>
<td>31</td>
<td>26 Juli 2019</td>
<td>Hari Ke-29 Kegiatan Praktik</td>
<td>Penyusunan laporan tugas khusus kegiatan kerja praktik di diklat PT. PERTAMINA (Persero) RU VI serta bimbingan dengan pembimbing kerja praktik</td>
</tr>
<tr>
<td>No</td>
<td>Tanggal</td>
<td>Nama Kegiatan</td>
<td>Keterangan</td>
</tr>
<tr>
<td>----</td>
<td>--------------</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Minggu ke-7</td>
<td></td>
</tr>
<tr>
<td>32</td>
<td>29 Juli 2019</td>
<td>Hari Ke-30 Kegiatan Kerja Praktik</td>
<td>Presentasi hasil analisis tugas khusus kepada pembimbing kerja praktik</td>
</tr>
<tr>
<td>33</td>
<td>30 Juli 2019</td>
<td>Hari Ke-31 Kegiatan Kerja Praktik</td>
<td>Revisi hasil analisis tugas khusus dan presentasi hasil analisis tugas khusus kepada pembimbing kerja praktik</td>
</tr>
<tr>
<td>34</td>
<td>31 Juli 2019</td>
<td>Hari Ke-32 Kegiatan Kerja Praktik</td>
<td>Pembahasan tugas khusus dan pemberian beberapa masukan terhadap hasil analisis tugas khusus Bersama kepala bagian divisi stationary & statutory inspection engineer</td>
</tr>
<tr>
<td>35</td>
<td>1 Agustus 2019</td>
<td>Hari Ke-33 Kegiatan Kerja Praktik</td>
<td>Presentasi hasil akhir laporan tugas khusus kegiatan kerja praktik dan penanda tanganan lembar pengesahan</td>
</tr>
<tr>
<td>36</td>
<td>2 Agustus 2019</td>
<td>Konfirmasi kegiatan kerja praktik selesai dilaksanakan</td>
<td>Konfirmasi selesainya kegiatan kerja praktik pada Diklat PT. PERTAMINA (Persero) RU VI Balongan</td>
</tr>
</tbody>
</table>
Universitas Pertamina
BAB IV
HASIL KERJA PRAKTIK

4.1 Tugas Khusus
Selama kegiatan kerja praktik penulis diberikan tugas khusus dengan judul “analisis perubahan minyak mentah terhadap pemilihan material heat exchanger 11-E-108 di PT. PERTAMINA (Persero) RU VI Balongan”. Adapun tujuan dari tugas khusus ini adalah supaya instansi mengetahui penggunaan material yang paling baik pada heat exchanger jika menggubah jenis minyak mentah yang akan digunakan dalam proses pengolahan bahan bakar minyak. Batasan ruang lingkup pembahasan dari laporan tugas khusus ini membahas mengenai pemilihan material yang dianggap paling baik dari segi ketahanan terhadap korosi atau remaining life dan dari segi performa atau temperature akhir yang akan dihasilkan.

4.2 Analisis Tugas Khusus
Analisis perhitungan yang dilakukan oleh penulis adalah sebagai berikut.

4.2.1 Spesifikasi Heat Exchanger 11-E-108
Spesifikasi dari heat exchanger 11-E-108 adalah sebagai berikut.

<table>
<thead>
<tr>
<th>Unit</th>
<th>Crude Distillation Unit (CDU)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nama Alat</td>
<td>Heat Exchanger 11-E-108</td>
</tr>
<tr>
<td>Type</td>
<td>BES</td>
</tr>
<tr>
<td>Jenis Alat</td>
<td>Shell and Tube</td>
</tr>
<tr>
<td>Design Pressure</td>
<td>Shell 38,5 kg/cm²</td>
</tr>
<tr>
<td></td>
<td>Tube 27,2 kg/cm²</td>
</tr>
<tr>
<td>Design Temperature</td>
<td>Shell 100℃</td>
</tr>
<tr>
<td></td>
<td>Tube 260℃</td>
</tr>
<tr>
<td>Jumlah Tube</td>
<td>646</td>
</tr>
<tr>
<td>Panjang Tube</td>
<td>4015 mm</td>
</tr>
<tr>
<td>Diameter Tube</td>
<td>152.4 mm</td>
</tr>
<tr>
<td>Jumlah Shell</td>
<td>1</td>
</tr>
<tr>
<td>Panjang Shell</td>
<td>4660 mm</td>
</tr>
<tr>
<td>Diameter Shell</td>
<td>880 mm</td>
</tr>
<tr>
<td>Fluida</td>
<td>Shell (Crude)</td>
</tr>
<tr>
<td></td>
<td>Tube (HGO)</td>
</tr>
</tbody>
</table>
4.2.2 Analisis Perpindahan Panas

Tabel 4.1 Data Heat Exchanger 11E108

<table>
<thead>
<tr>
<th>Tanggal</th>
<th>Flowrate (Ton/Jam)</th>
<th>Temperatur In (°C)</th>
<th>Temperatur Out (°C)</th>
<th>Flowrate (Ton/Jam)</th>
<th>Temperatur In (°C)</th>
<th>Temperatur Out (°C)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 Juli 2019</td>
<td>713,449</td>
<td>59,569</td>
<td>76,683</td>
<td>106,82</td>
<td>229,57</td>
<td>131,59</td>
</tr>
<tr>
<td>2 Juli 2019</td>
<td>702,78</td>
<td>55,61</td>
<td>72,912</td>
<td>106,93</td>
<td>229,21</td>
<td>130,28</td>
</tr>
<tr>
<td>3 Juli 2019</td>
<td>706,738</td>
<td>52,443</td>
<td>70,467</td>
<td>108,62</td>
<td>226,85</td>
<td>127,64</td>
</tr>
<tr>
<td>4 Juli 2019</td>
<td>693,119</td>
<td>55,175</td>
<td>72,874</td>
<td>106,54</td>
<td>226,77</td>
<td>128,12</td>
</tr>
<tr>
<td>5 Juli 2019</td>
<td>692,1</td>
<td>56,26</td>
<td>73,275</td>
<td>101,51</td>
<td>225,06</td>
<td>126,26</td>
</tr>
<tr>
<td>Rata-Rata</td>
<td>701,637</td>
<td>55,885</td>
<td>73,242</td>
<td>106,084</td>
<td>227,492</td>
<td>128,778</td>
</tr>
</tbody>
</table>

* Keterangan : Data diambil dari file Data Feed Properties & HE 11-E-108 miliki PT. PERTAMINA (Persero) RU VI Balongan

Adapun analisis perpindahan panasnya berupa perhitungan log mean temperature difference, perhitungan koefisien perpindahan panas menyeluruh, dan perhitungan heat transfer. Perhitungan log mean temperature difference adalah sebagai berikut.

\[
LMTD = \frac{(T_h, i - T_c, o) - (T_h, o - T_c, i)}{\ln\left(\frac{T_h, i - T_c, o}{T_h, o - T_c, i}\right)}
\]

\[
LMTD = \frac{(227,492 - 73,242) - (128,778 - 55,885)}{\ln\left(\frac{227,492 - 73,242}{128,778 - 55,885}\right)}
\]

\[
LMTD = \frac{154,24 - 72,893}{\ln\left(\frac{154,24}{72,893}\right)}
\]

\[
LMTD = 108,5325 ^\circ C
\]

\[
\frac{1}{UA} = \frac{1}{ht \cdot A_i} + \frac{R_f^n}{A_i} + \frac{\ln\left(\frac{D_o}{D_i}\right)}{2\pi kL} + \frac{R_o^n}{A_o} + \frac{1}{ht \cdot A_o}
\]

Dimana :
- \(U\) : Koefisien Perpindahan Panas Menyeluruh
- \(A\) : Luas Alat
- \(R_f^n\) : Fouling Factors (Tabel 11.1 Buku “Fundamental of Heat and Mass Transfer 7th Edition”)
- \(K\) : Konduktivitas Termal
- \(L\) : Panjang
- \(h\) : Entalpi Fluida
- \(D\) : Diameter
- \(i\) : Inner
- \(o\) : Outer

Fluida yang terdapat dalam shell adalah minyak mentah sedangkan fluida yang terdapat dalam tube adalah HGO EX. Maka perhitungan koefisien perpindahan panas menyeluruh adalah sebagai berikut.

Spesifikasi fluida shell (Crude) pada 15℃ densitas 0,893 g/ml :

\[k = 145.10^{-3} \text{W/m.k} \]

\[\mu = 99.9.10^{-2} \text{N.s/m}^2 \]

\[Pr = 12.900 \]

Maka, nilai entalpinya adalah sebagai berikut.

\[Re = \frac{4 \cdot \dot{m}}{\pi \cdot D \cdot \mu} = \frac{4 \cdot 194.9 \text{kg}}{\pi \cdot 0.88 \text{m} \cdot 99.9.10^{-2} \text{N.s/m}^2} = 282,275 \]

\[Nu = 0.023 . Re^{4/5} \cdot Pr^{0.4} = 0.023 \cdot 282,275^{4/5} \cdot 12900^{0.4} = 92,577 \]

\[h_o = Nu \cdot \frac{K}{D} = 92,577 \cdot \frac{145.10^{-3} \text{w/m.k}}{0.88 \text{m}} = 15,254 \cdot \frac{\text{w}}{\text{m}^2 \cdot \text{K}} \]

Sedangkan untuk Tube (HGO) pada 15℃ densitas 0,8845 g/ml:

\[k = 145.10^{-3} \text{W/m.k} \]

\[\mu = 48,6.10^{-2} \text{N.s/m}^2 \]

\[Pr = 6400 \]

Maka, nilai entalpinya adalah sebagai berikut.

\[Re = \frac{4 \cdot \dot{m}}{\pi \cdot D \cdot \mu} = \frac{4 \cdot 29,467 \text{kg}}{\pi \cdot 0.1524 \text{m} \cdot 48.6.10^{-2} \text{N.s/m}^2} = 506,553 \]

\[Nu = 0.023 . Re^{4/5} \cdot Pr^{0.4} = 0.023 \cdot 506,553^{4/5} \cdot 6400^{0.4} = 111,66 \]

\[h_i = Nu \cdot \frac{K}{D} = 111,66 \cdot \frac{145.10^{-3} \text{w/m.k}}{0.1524 \text{m}} = 106,238 \cdot \frac{\text{w}}{\text{m}^2 \cdot \text{K}} \]

Tube heat exchanger menggunakan material A214 Carbon Steel memiliki kandungan 0,18% C 0,27-0,63% Mn 0,035% P4 dan 0,035% S, konduktivitas termal sebesar 60,5 W/m.k dan *fouling factor* untuk *fuel oil* sebesar 0,0009 m²/k.w. Maka koefisien perpindahan panas menyeluruhnya adalah :

\[
\frac{1}{U_A} = \frac{1}{h_i . A_i} + \frac{R_f^i}{A_i} + \frac{\ln \left(\frac{D_o}{D_i} \right)}{2 \pi k L} + \frac{R_f^o}{A_o} + \frac{1}{h_o . A_o}
\]

\[
\frac{1}{U_A} = \frac{1}{106,238 \cdot 4 \cdot 1,922} + \frac{0,0009}{4 \cdot 1,922} + \frac{\ln \left(\frac{0,88}{0,1524} \right)}{2 \pi \cdot 60,5 \cdot 4,015} + \frac{0,0009}{12,88} + \frac{1}{15,254 \cdot 12,88}
\]
\[
\frac{1}{U \cdot 1,92307} = 1,224 \cdot 10^{-3} + 1,17 \cdot 10^{-4} + 1,148 \cdot 10^{-3} + 6,987 \cdot 10^{-5} + 5,089 \cdot 10^{-3}
\]

\[
\frac{1}{U \cdot 1,92307} = 7,64787 \cdot 10^{-3}
\]

\[
U = \frac{1}{7,835 \cdot 10^{-3} \cdot 1,92307} = 67,993 \text{ W/m}^2\text{K}
\]

\[
Q = U \cdot A \cdot LMTD
\]

\[
Q = 67,993 \frac{w}{m^2K} \cdot 1,922 \text{ m}^2 \cdot 381,53 K
\]

\[
Q = 49890,95 \text{ W}
\]

Berdasarkan hasil analisis perpindahan panas diatas maka dapat disimpulkan bahwa Konduktivitas termal suatu material akan mempengaruhi nilai heat transfer dari suatu alat penukar panas. Selain itu karakteristik fluida, temperatur masuk dan keluar, dan spesifikasi suatu heat exchanger juga akan mempengaruhi nilai heat transfer heat exchanger tersebut.

4.2.3 Analisis Korosi

Untuk menunjang proses analisis berikut adalah data kondisi heat exchanger 11-E-108 yang ditulis pada Tabel 4.2.
Tabel 4.2 Data Kondisi Heat Exchanger 11-E-108

<table>
<thead>
<tr>
<th>Material</th>
<th>Shell</th>
<th>Tube</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fluida</td>
<td>Carbon Steel A516. Gr 70</td>
<td>Carbon Steel A214</td>
</tr>
<tr>
<td>Kandungan Sulfur (%wt)</td>
<td>0,2</td>
<td>0,12</td>
</tr>
<tr>
<td>Total Acid Number (TAN) (mmKOH/g)</td>
<td>1,31</td>
<td>0,89</td>
</tr>
<tr>
<td>Temperatur Desain (℃)</td>
<td>130℃</td>
<td>260℃</td>
</tr>
<tr>
<td>Temperatur (℃)</td>
<td>± 65℃</td>
<td>± 230℃</td>
</tr>
<tr>
<td>Initial Thickness (mm)</td>
<td>19,77</td>
<td>2,1</td>
</tr>
<tr>
<td>Actual Thickness (mm)</td>
<td>14,55</td>
<td></td>
</tr>
<tr>
<td>Corrosion Rate (mm/a)</td>
<td>0,38</td>
<td>0,45</td>
</tr>
</tbody>
</table>

Referensi. API 581

Keterangan: Data diambil dari file “Data Evaluasi Sour Crude Optimize Case CDU Unit” PT. PERTAMINA (Persero) RU VI Balongan

Berdasarkan data tersebut, laju korosi dari heat exchanger 11 E 108 yang terjadi pada shell adalah 0,38 mm/tahun dan yang terjadi pada tube adalah sekitar 0,45 mm/tahun. Hal ini termasuk ke dalam korosi tingkat menengah/moderate. Dengan nilai laju korosi tersebut, maka remaining life dari heat exchanger 11-E-108 adalah sebagai berikut.

\[
\text{Remaining Life} = \frac{\text{Initial Thickness} - \text{Actual Thickness}}{\text{Corrosion Rate}}
\]

\[
\text{Remaining Life (Shell)} = \frac{19,77 \text{ mm} - 14,55 \text{ mm}}{0,38 \text{ mm/tahun}}
\]

\[
\text{Remaining Life (Shell)} = 13,7368 \text{ tahun}
\]

\[
\text{Remaining Life (Tube)} = \frac{2,1 \text{ mm}}{0,45 \text{ mm/tahun}}
\]

\[
\text{Remaining Life (Tube)} = 4,66 \text{ tahun}
\]

4.3 Pembahasan Hasil Analisis Tugas Khusus

Korosi yang terjadi pada heat exchanger 11-E-108 ini adalah jenis Napthenic acid corrosion (NAC), korosi jenis ini dipengaruhi oleh temperature yang tinggi saat komponen beroperasi dan juga karakteristik dari fluida yang beroperasi. Fluida crude mempunyai 20 % kandungan sulfur dari berat total dan memiliki nilai Total Acid Number (TAN) sebesar 1,31 mgKOH/g dan beroperasi pada temperatur sekitar 65℃. Sedangkan fluida HGO mempunyai 12% kandungan sulfur dari berat total dan memiliki nilai Total Acid Number (TAN) sebesar 0,89 mgKOH/g dan beroperasi pada temperatur sekitar 230℃.

Material yang digunakan heat exchanger 11-E-108 saat ini adalah carbon steel A516 grade 70 pada shell dan carbon steel A214 pada tube maka mengacu pada table estimated corrosion rated American Petroleum Institute (API) 581 maka nilai dari laju korosi yang dialami heat exchanger tersebut adalah 0,38 mm/tahun pada shell dan 0,45 mm/tahun pada tube. Laju korosi tersebut masuk kedalam laju korosi dengan tingkat menengah/moderate karena masih dibawah 0,51 mm/tahun.

Setelah mengetahui laju korosi yang dialami heat exchanger tersebut, kita dapat menganalisa remaining life atau sisa umur heat exchanger 11-E-108 berdasarkan laju korosinya. Dengan ketebalan awal sebesar 19,77 mm dan ketebalan aktual saat ini sebesar 14,55 mm pada shell maka remaining life dari heat exchanger tersebut sekitar 13,73 tahun lagi.

Namun dikarenakan laju korosi pada tube lebih cepat, tube pada heat exchanger memiliki ketebalan 14 BWG atau sebesar 2,1 mm maka dengan laju korosi sebesar 0,45 mm/tahun remaining life dari tube tersebut akan menjadi 4,66 tahun. Oleh karena itu, dibutuhkan upgrade material pada tube guna mencegah heat exchanger 11-E-108 mengalami kerusakan atau bahkan sampai berhenti beroperasi. Saat melakukan upgrade material perlu mempertimbangkan pemilihan material, pemilihan material yang akan digunakan akan mempengaruhi performa dan ketahanan dari heat exchanger tersebut. Material yang dipilih harus memiliki nilai konduktivitas termal yang tidak berbeda jauh dengan nilai konduktivitas termal material yang sebelumnya digunakan dan memiliki ketahanan korosi lebih baik dari material sebelumnya.

Konduktivitas termal material mempengaruhi besar kecilnya nilai perpindahan panas dari heat exchanger. Heat transfer akan mempengaruhi performa dari suatu heat exchanger dimana semakin
besar nilai heat transfer suatu alat penukar panas, maka akan semakin bagus dan efisien pula kinerja dari heat exchanger tersebut.

Berikut adalah beberapa material yang disarankan yang dapat digunakan sebagai pengganti carbon steel A214 pada tube heat exchanger 11-E-108 dilihat dari ketahanan korosi yang terjadi dan nilai konduktivitas termal yang dimiliki material tersebut. Perhitungan laju korosi menurut API 581 dan remaining lifenya digunakan sebagai bahan pertimbangan dalam pemilihan material. Beberapa material yang disarankan ditulis pada Tabel 4.3.

Dari segi korosi, mengacu pada American Petroleum Institute 581 terdapat beberapa bahan yang informasi laju korosinya tersedia. Fluida kerja yang digunakan oleh heat exchanger 11-E-108 adalah crude oil dan HGO yang memiliki kandungan sulfur sebesar 0,2 %wt dan TAN sebesar kurang lebih 0,8 sampai 1,5 mg/g. Mengacu pada Tabel 4.3 mengenai daftar material yang disarankan untuk upgrade material, dari segi korosi terdapat beberapa material yang mempunyai nilai ketahanan korosi yang baik diantaranya stainless steel AISI 304, stainless steel AISI 316, stainless steel AISI 347, chromium steel ASTM A387 5 Cr dan chromium steel ASTM A387 9Cr. Berikut adalah detail ketahanan korosi beserta remaining life beberapa material yang disarankan.

Mengacu pada Tabel 4.3 dan hasil perhitungan maka diperoleh informasi sebagai berikut. Carbon steel mempunyai nilai laju korosi sebesar 0,64 mm/tahun dan remaining life sekitar 3,28 tahun namun laju korosinya akan cenderung bertambah jika semakin tinggi suhu operasinya. Stainless steel mempunyai nilai laju korosi sebesar 0,03 mm/tahun, remaining life sekitar 70 tahun dan laju korosinya cenderung tidak dipengaruhi oleh suhu saat operasi, untuk chromium (low) steel memiliki nilai laju korosi sebesar 0,38 mm/tahun, remaining life sekitar 5,52 tahun dan laju korosinya cenderung bertambah jika suhu operasi meningkat. Sedangkan untuk material chromium steel ASTM A387 untuk grade 5 nilai laju korosinya sebesar 0,08 mm/tahun, remaining life sekitar 26,25 tahun dan laju korosinya mengalami sedikit kenaikan jika suhu operasi naik dan untuk chromium steel ASTM A387 grade 9 nilai laju korosinya sebesar 0,05 mm/tahun, remaining life sekitar 42 tahun dan laju korosinya akan meningkat seiring dengan kenaikan suhu operasi.
<table>
<thead>
<tr>
<th>No</th>
<th>Material</th>
<th>Melting Point (K)</th>
<th>Densitas (kg/m3)</th>
<th>Konduktivitas Termal (W/m.K)</th>
<th>Heat Transfer pada Heat exchanger (W)</th>
<th>Laju Korosi Ref. API 581 (mm/y)</th>
<th>Remaining Life (Tahun)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Carbon Steel A214</td>
<td>1810</td>
<td>7850</td>
<td>60,5</td>
<td>49890,95</td>
<td>0,45</td>
<td>4,66</td>
</tr>
<tr>
<td>2</td>
<td>Stainless Steel AISI 304</td>
<td>1670</td>
<td>7900</td>
<td>14,5</td>
<td>33792,49</td>
<td>0,03</td>
<td>70</td>
</tr>
<tr>
<td>3</td>
<td>Stainless Steel AISI 316</td>
<td>1670</td>
<td>8238</td>
<td>13,4</td>
<td>32654,87</td>
<td>0,03</td>
<td>70</td>
</tr>
<tr>
<td>4</td>
<td>Stainless Steel AISI 347</td>
<td>1670</td>
<td>7978</td>
<td>14,2</td>
<td>33492,19</td>
<td>0,03</td>
<td>70</td>
</tr>
<tr>
<td>5</td>
<td>Chromium (low) Steel (0.16% C, 1% Cr, 0.54% Mo, 0.39% Si)</td>
<td>1810</td>
<td>7858</td>
<td>42,3</td>
<td>46863,08</td>
<td>0,38</td>
<td>5,52</td>
</tr>
<tr>
<td>6</td>
<td>Chromium (low) Steel (0.2% C, 1,02% Cr, 0.15% V)</td>
<td>1810</td>
<td>7836</td>
<td>48,9</td>
<td>48174,84</td>
<td>0,38</td>
<td>5,52</td>
</tr>
<tr>
<td>7</td>
<td>Chromium Steel ASTM A387 (5 Cr – 0,5 Mo)</td>
<td>1420</td>
<td>7800</td>
<td>40</td>
<td>46325,69</td>
<td>0,08</td>
<td>26,25</td>
</tr>
<tr>
<td>8</td>
<td>Chromium Steel ASTM A387 (9 Cr – 1 Mo)</td>
<td>1410</td>
<td>7800</td>
<td>26</td>
<td>41601,44</td>
<td>0,05</td>
<td>42</td>
</tr>
<tr>
<td>9</td>
<td>Copper-Nickel 9010</td>
<td>1145</td>
<td>8900</td>
<td>40</td>
<td>46325,69</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>10</td>
<td>Copper-Nickel 7030</td>
<td>1240</td>
<td>8950</td>
<td>29</td>
<td>42894,35</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

Dari segi *heat transfer*, mengacu pada **Tabel 4.3** terdapat material yang nilai konduktivitas termalnya lebih baik dari nilai konduktivitas termal *carbon steel* A214 yaitu *carbon steel* AISI 1010 yang akan menghasilkan nilai *heat transfer* lebih dari 49 kW. Selain itu terdapat juga beberapa material yang mempunyai nilai konduktivitas termal yang mendekati nilai konduktivitas termal dari *carbon steel* A214 diantaranya adalah *chromium (low) steels*, *chromium steels* ASTM A387 grade 5 dan CuNi 9010 yang akan menghasilkan nilai *heat transfer* sebesar kurang lebih 46 sampai 48 kW.

Sedangkan untuk material yang mempunyai nilai konduktivitas termal dibawah nilai konduktivitas termal dari *carbon steel* A516 grade 70 adalah CuNi 7030, *Stainless steel* AISI 304, *stainless steel* AISI 316, *Stainless Steel* AISI 347 dan *chromium steel* ASTM A387 grade 9 yang akan menghasilkan nilai *heat transfer* kurang dari 43 kW.

Untuk analisis material lain dapat dilakukan dengan menghitung nilai koefisien perpindahan panas secara menyeluruh seperti yang dijelaskan pada halaman sebelumnya.

Jika mempertimbangkan kedua hal tersebut (nilai *heat transfer* dan *remaining life*) diantaranya beberapa material tersebut, maka terdapat beberapa material yang disarankan untuk melakukan upgrade material pada *tube heat exchanger* 11-E-108 diantaranya *chromium steel* ASTM A387 grade 5 yang mempunyai nilai konduktivitas termal 40 W/m.K dan *remaining life* 26,25 tahun, *chromium steel* ASTM A387 grade 9 yang mempunyai nilai konduktivitas termal 26 W/m.K dan *remaining life* 40 tahun dan *stainless steel* kelas 3 yang mempunyai nilai konduktivitas termal 14,5 W/m.K dan *remaining life* 70 tahun.

Untuk membandingkan performa pada penggunaan material *carbon steel* A214 yang memiliki konduktivitas termal sebesar 60,5 W/m.K dengan tiga material lain yang disarankan maka penulis mencoba melakukan simulasi perpindahan panas dengan menggunakan *software ansys fluent* untuk mengetahui simulasi perpindahan panas dari *heat exchanger* 11-E-108 tersebut dengan menggunakan
beberapa material yang disarankan tersebut. Hasil simulasi perpindahan panasnya terlampir pada gambar 4.1, gambar 4.2, gambar 4.3.

Gambar 4.1 Simulasi Perpindahan Panas HE Material chromium steel ASTM A387 grade5
(Sumber : Dokumentasi Hasil Simulasi Ansys Fluent)

Gambar 4.1 menunjukan hasil simulasi perpindahan panas heat exchanger saat menggunakan material chromium steel dengan kandungan 5Cr-0,5Mo. Saat suhu masuk sebesar kurang lebih 230℃ akan menghasilkan suhu fluida suhu tube fluida keluar sebesar kurang lebih 410 K atau sekitar 137 ℃ dan suhu fluida keluar termasuk dalam interval temperatur operasi sebesar kurang dari 200℃.

Gambar 4.2 Simulasi Perpindahan Panas HE Material chromium steel ASTM A387 Grade9
(Sumber : Dokumentasi Hasil Simulasi Ansys Fluent)

Gambar 4.2 menunjukan hasil simulasi perpindahan panas heat exchanger saat menggunakan material chromium steel dengan kandungan 9Cr-1Mo. Saat suhu masuk sebesar kurang lebih 230℃ akan menghasilkan suhu fluida suhu tube fluida keluar sebesar kurang lebih 425 K atau sekitar 152 ℃ dan suhu fluida keluar termasuk dalam interval temperatur operasi sebesar kurang dari 200℃.
Gambar 4.3 Simulasi Perpindahan Panas HE Material Stainless Steel A304

(Sumber : Dokumentasi Hasil Simulasi Ansys Fluent)

Gambar 4.3 menunjukkan hasil simulasi perpindahan panas heat exchanger saat menggunakan material stainless steel A304. Saat suhu masuk sebesar kurang lebih 230°C akan menghasilkan suhu fluida suhu tube fluida keluar sebesar kurang lebih 440 K atau sekitar 167 °C dan suhu fluida keluar termasuk dalam interval temperatur operasi sebesar kurang dari 200°C.

Berdasarkan hal tersebut dengan mempertimbangkan konduktivitas termal dan ketahanan terhadap korosi terdapat tiga jenis material yang disarankan untuk digunakan saat upgrade material pada tube heat exchanger 11-E-108 diantaranya adalah chromium steel ASTM A387 grade 5 yang mempunyai nilai heat transfer yang paling tinggi diantaranya ketiga material tersebut namun mempunyai remaining life yang paling sedikit diantaranya material lain yaitu sekitar 26,25 tahun. selanjutnya terdapat material stainless steel A304 yang mempunyai ketahanan korosi yang terbaik diantaranya ketiga material tersebut, remaining lifenya sekitar 70 tahun dan mempunyai nilai heat transfer yang sedikit berbeda. Dan yang terakhir material chromium steel ASTM A387 grade 9 yang mempunyai nilai heat transfer yang cukup baik dan mempunyai ketahanan korosi yang baik pula dan remaining lifenya mencapai sekitar 40 tahun.

Untuk milih material yang dianggap paling efisien untuk digunakan sebagai material penganti maka penulis melakukan pemilihan material menggunakan metode Kepner-Tregoe Decision Analysis (KT-DA) yang terlampir pada Tabel 4.4.
Tabel 4.4 Kepner-Tregoe Decision Analysis (KT-DA)

<table>
<thead>
<tr>
<th>Alternative Solution</th>
<th>Chromium-Steel (5Cr-0.5Mo)</th>
<th>Chromium-Steel (9Cr-1Mo)</th>
<th>Stainless Steel AISI 304</th>
<th>Carbon Steel A214</th>
</tr>
</thead>
<tbody>
<tr>
<td>Must:</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Temperatur Operasi</td>
<td>GO</td>
<td>GO</td>
<td>GO</td>
<td>GO</td>
</tr>
<tr>
<td>Life Time > 20 tahun</td>
<td>GO</td>
<td>GO</td>
<td>GO</td>
<td>NO GO</td>
</tr>
<tr>
<td>Want:</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ekonomis</td>
<td>3</td>
<td>2</td>
<td>5</td>
<td>4</td>
</tr>
<tr>
<td>Ketahanan Terhadap Panas</td>
<td>3</td>
<td>2</td>
<td>4</td>
<td>5</td>
</tr>
<tr>
<td>Total</td>
<td>6</td>
<td>4</td>
<td>9</td>
<td>9</td>
</tr>
</tbody>
</table>

Ketiga material tersebut mempunyai life time / remaining life diatas 20 tahun dan suhu akhir yang dihasilkan oleh ketiga material tersebut berdasarkan simulasi masuk kedalam interval temperatur operasi untuk heat exchanger oleh karena itu ketiga material tersebut memenuhi syarat sebagai material penganti.

Dari segi ketahanan terhadap panas, stainless steel mempunyai point paling banyak dengan melting point pada suhu 1670℃ sedangkan untuk chromium steel 5Cr dan 9Cr mempunyai melting point pada suhu sekitar 1420℃ dan 1410℃.

Berdasarkan pertimbangan tersebut, dari ketiga material yang disarankan, stainless steel mempunyai nilai yang paling tinggi dari segi ekonomis dan ketahanan terhadap panas dibandingkan dengan material chromium steel 5Cr dan 9Cr. Oleh karena itu pemilihan stainless steel AISI 304 sebagai material pengganti dirasa tepat.
BAB V
TINJAUAN TEORITIS

5.1 Perpindahan Panas

Dalam hukum kekekalan energi dinyatakan bahwa energi tidak dapat diciptakan ataupun dimusnahkan. Namun energi dapat berubah bentuk dari satu bentuk energi ke bentuk energi lainnya. Terdapat beberapa disiplin ilmu yang mempelajari mengenai hal tersebut, salah satunya adalah ilmu perpindahan panas. Perpindahan panas adalah perambatan energi thermal yang disebabkan karena adanya perbedaan suhu (Bergman, 2011).

Ilmu perpindahan panas mempelajari secara mendetail bagaimana proses perpindahan energi yang terjadi dalam suatu medium. Terdapat tiga macam jenis perpindahan panas diantaranya adalah perpindahan panas secara konduksi, konveksi dan radiasi.

Perpindahan panas secara konduksi adalah perpindahan panas yang tidak diikuti oleh perpindahan massa dari zat/media yang membawanya. Pada proses ini perpindahan panas terjadi akibat meningkatnya energi yang terkandung dalam molekul penyusun zat tersebut, kemudian energi berpindah dari molekul yang satu ke molekul lainnya dengan cara bersentuhan.

Selanjutnya adalah perpindahan panas secara konveksi, perpindahan panas secara konveksi merupakan perpindahan energi antara permukaan benda padat dengan permukaan benda cair atau gas yang bergerak relatif terhadapnya. Konveksi dapat dibedakan menjadi dua jenis yaitu free convection (konveksi bebas) dan forced convection (konveksi paksa). Dalam konveksi bebas aliran fluida disebabkan oleh perbedaan massa jenis yang disebabkan oleh adanya perbedaan temperature. Sedangkan dalam konveksi paksa, aliran fluida terjadi karena paksaan atau bantuan dari energi luar.

Perpindahan panas secara radiasi merupakan proses perpindahan panas yang tidak membutuhkan medium atau zat yang berperan sebagai perantara. Pada proses ini perpindahan panas terjadi melalui energi yang dibawa oleh gelombang elektromagnetik dalam bentuk foton.

5.2 Heat Exchanger

Heat exchanger (Gambar 5.1) atau dalam Bahasa Indonesia berarti alat penukar panas merupakan suatu alat yang dapat berfungsi sebagai pemanas maupun pendingin dengan memanfaatkan ilmu perpindahan panas. Heat exchanger didesain sebisa mungkin agar perpindahan panas yang terjadi antara dua fluida berlangsung dengan efisien.
Dalam heat exchanger perpindahan panas terjadi karena adanya kontak antara kedua fluida dengan dinding pemisah yang menyebabkan panas dari satu fluida merambat ke dinding pemisah dan merambat kembali ke fluida lainnya. Saat ini di dunia industri penggunaan heat exchanger sudah sangat sering digunakan seperti dalam kilang minyak, pabrik kimia, industri gas alam, dan pembangkit listrik.

5.3 Klasifikasi Heat Exchanger

5.3.1 Klasifikasi Berdasarkan Hubungan Antar Fluida

Berdasarkan hubungan antar fluida, proses perpindahan panas dapat terjadi secara langsung dan tidak langsung.

1. Heat exchanger secara langsung ialah alat dimana proses perpindahan panas terjadi dimana fluida panas akan bercampur dengan fluida dingin secara langsung tanpa adanya pemisah dalam suatu ruangan tertentu.

5.3.2 Klasifikasi Berdasarkan Aliran Fluida dan Distribusi Temperatur

Pada heat exchanger terdapat beberapa teknik untuk memindahkan panas dari fluida yang memanaskan ke fluida yang dipanaskan. Berdasarkan aliran fluida dari heat exchanger ini, maka jenis heat exchanger dapat dibedakan menjadi tiga macam yaitu:

1. Aliran Sejajar (Paralel Flow)
 Aliran jenis ini (Gambar 5.2) fluida pemanas dan fluida yang dipanaskan mengalir sejajar dalam arah aliran yang sama.

2. Aliran Berlawanan (Counter Flow)
 Aliran jenis ini (Gambar 5.3) fluida pemanas mengalir sejajar namun dengan arah aliran berlawanan dengan fluida yang dipanaskan.

3. Aliran Majemuk (Multipass Flow)

Aliran jenis ini (Gambar 5.4) fluida pemanas mengalir dari banyak arah, atau sebaliknya jika fluida yang dipanaskan berasal dari banyak arah. Pada jenis ini heat exchanger mempunyai efektifitas yang lebih baik dibandingkan dengan heat exchanger dengan single pass flow.

Gambar 5.4 Aliran Majemuk (Multipass Flow)
(Sumber: www.engineersedge.com/heat_exchanger/Camparison_heat_exchanger_types.htm)

Aliran fluida diatas terjadi pada heat exchanger tipe shell and tube sedangkan untuk heat exchanger dengan tipe kontak langsung tidak berlaku pembagian klasifikasi jenis aliran fluida seperti ini.

Dibawah ini merupakan pembahasan mengenai aliran fluida dan distribusi temperatur pada heat exchanger.

1. Aliran dan distribusi temperatur pada heat exchanger langsung

Pada heat exchanger ini, suhu akhir dari fluida panas dan fluida dingin akan menjadi sama karena kedua jenis fluida tersebut akan membentuk campuran fluida yang keluar dari heat exchanger tersebut. Hal ini berarti panas yang diberikan fluida pemanas akan diterima seluruhnya oleh fluida yang akan dipanaskan tanpa adanya losses.

2. Aliran dan distribusi temperature pada heat exchanger tidak langsung

Panas heat exchanger jenis ini tube berfungsi sebagai pemisah antara fluida panas dan fluida dingin. Oleh karena itu sangat penting melakukan analisa dan pertimbangan untuk menentukan fluida yang akan mengalir dalam tube tersebut.
5.3.3 Klasiﬁkasi Berdasarkan Fungsi
Berdasarkan dari fungsinya heat exchanger dapat dibagi menjadi beberapa kelompok yaitu :
(Muthaharussayidun, 2015)

1. Chiller
 Heat exchanger ini berfungsi untuk mendinginkan ﬂuida sampai pada temperatur rendah.
 Suhu pendingin dalam *chiller* jauh lebih dingin dibandingkan dengan pendingin yang
dilakukan dengan pendingin air. Pada *chiller* media pendingin yang digunakan adalah
amoniak atau freon.

2. Condensor
 Heat exchanger ini digunakan untuk mendinginkan atau mengembunkan uap atau campuran
 uap sehingga terjadi perubahan fase menjadi cairan.

3. Heat Exchanger
 Heat exchanger dapat memanfaatkan panas untuk dua fungsi sekaligus, yaitu sebagai
 pemanas dan pendingin suatu ﬂuida.

4. Reboiler
 Heat exchanger ini mempunyai fungsi untuk mendidihkan kembali ﬂuida serta menguapkan
 cairan yang diproses. Media pemanas yang digunakan adalah uap atau zat panas yang sedang
diproses itu sendiri.

5. Cooler
 Heat exchanger ini berfungsi untuk menurunkan suhu ﬂuida dengan menggunakan air
 sebagai media pendingin atau bisa juga menggunakan udara sebagai media pendingin dengan
 bantuan kipas.

6. Heater
 Heat exchanger ini digunakan untuk memanaskan suatu ﬂuida. Umumnya zat yang
digunakan adalah uap atau ﬂuida panas lainnya.

7. Superheater
 Heat exchanger ini digunakan untuk mengubah uap jenuh pada pembangkit uap menjadi uap
 panas lanjut (*superheated steam*). Biasanya yang sumber panas yang digunakan adalah panas
 yang dihasilkan dari proses pembakaran bahan bakar pada dapur ketel.

8. Evaporator
 Heat exchanger ini digunakan untuk menguapkan cairan yang berupa larutan sehingga
diperoleh larutan yang lebih pekat. Media pemanas yang digunakan adalah uap dengan
tekanan rendah.
9. Economizer

Economizer atau pemanas air pengisi ketel bertujuan untuk menaikan suhu feed water sebelum masuk ke dalam drum air. Adapun media pemanasnya adalah gas hasil pembakaran bahan bakar dalam dapur ketel.

5.3.4 Klasifikasi Berdasarkan Konstruksi

Berdasarkan konstruksinya, heat exchanger dapat dibedakan menjadi dua jenis yaitu tubular heat exchanger dan gasketed plate heat exchanger. (Muthaharussayidun, 2015)

1. Tubular Heat Exchanger

Konstruksi panas heat exchanger jenis ini terdiri atas sebuah shell yang dilengkapi dengan pipa sejajar pada bagian ujung-ujungnya pada sebuah plat baja. Untuk mengatur arah aliran fluida yang masuk, maka sepanjang shell tersebut dipasang beberapa buah plat (buffle) yang disusun secara teratur pada jarak tertentu.

Tubular heat exchanger dapat dikelompokan kembali menjadi beberapa jenis diantaranya:

i. Fixed Tube Sheet

Merupakan desain heat exchanger yang paling sederhana dan ekonomis. Pada jenis ini tube dipasang secara kokoh pada kedua ujung pipa. Jenis ini cocok digunakan dalam suhu rendah, karena pemuaian bahan reaktif sangat kecil namun memiliki tingkat pengotoran yang tinggi.

ii. Floating Tube Sheet

Pada heat exchanger jenis ini, tube sheet dipasang secara kokoh pada salah satu ujung sedangkan ujung lainnya dibiarkan terpasang secara tidak kokoh atau mengambang (floating) guna menghindari tegangan pada shell and tube saat pemuaian pada suhu tinggi.

iii. U Tube

Jenis ini menggunakan satu buah tube sheet saja dengan konstruksi ujung pipa lainnya dibengkokkan sehingga menyerupai huruf U. jenis ini sangat cocok untuk kondisi operasi pada tekanan dan temperatur tinggi namun membutuhkan perawatan yang relatif lebih sulit.

iv. Kettle

Jenis ini dirancang untuk keperluan khusus seperti pembentukan uap. Dengan konstruksi yang sedemikian rupa maka volume pemuaian yang terjadi akibat perubahan fase cair menjadi gas dapat teratasi.
2. Gasketted Plate Heat Exchanger

5.4 Korosi

Pada umumnya korosi adalah kerusakan atau degradasi logam akibat reaksi redoks antara suatu logam dengan berbagai zat di lingkungannya yang menghasilkan senyawa-senyawa yang tidak dikehendaki. Dalam bahasa sehari-hari, korosi disebut perkaratan. Contoh korosi yang paling lazim adalah perkaratan besi.

Pada peristiwa korosi, logam mengalami oksidasi, sedangkan oksigen (udara) mengalami reduksi. Karat logam umumnya adalah berupa oksida atau karbonat. Rumus kimia karat besi adalah Fe₃O₄.nH₂O, suatu zat padat yang berwarna coklat-merah.

Korosi merupakan proses elektrokimia. Pada korosi besi, bagian tertentu dari besi itu berlaku sebagai anode, di mana besi mengalami oksidasi. Elektron yang dibebaskan di anode mengalir ke bagian lain dari besi itu yang bertindak sebagai katode, di mana oksigen tereroksidasi.

\[
\text{Fe}(s) \xrightarrow{} \text{Fe}^{2+} (aq) + 2e
\]

Elektron yang dibebaskan di anode mengalir ke bagian lain dari besi itu yang bertindak sebagai katode, di mana oksigen tererok sidasi.

\[
\text{O}_2(g) + 4\text{H}^+ (aq) + 4e \leftrightarrow 2 \text{H}_2\text{O}(l)
\]

atau

\[
\text{O}_2(g) + 2 \text{H}_2\text{O}(l) + 4 e \leftrightarrow 4 \text{OH}^- (aq)
\]

5.5 Napthenic Acid Corrosion

Berdasarkan API 581, *Napthenic acid corrosion* (NAC) adalah bentuk dari korosi temperatur tinggi yang terjadi terutama pada unit pengolahan *crude oil* dan unit vakum, serta unit pengolahan hilir yang memproses fraksi-fraksi tertentu yang mengandung napthenic *acid*.

5.5.1 Material Terdampak NAC

Material yang paling merasakan dampak dari jenis korosi ini adalah *carbon steel, low alloy steels, 300 series SS, 400 series SS*, dan paduan yang berbahan dasar utama nikel.

5.5.2 Faktor Krisis NAC

1. NAC adalah fungsi yang terdiri atas komponen kandungan napthenic *acid* *(neutralization number)*, temperatur, kandungan sulfur, kecepatan fluida, serta komposisi paduan.

2. Tingkat kerahan korosi meningkat dengan peningkatan tingkat keasaman dari fase hidrokarbon

3. *Neutralization number* atau TAN (*Total Acid Number*) adalah ukuran tingkat keasaman (kandungan asam organik) yang ditentukan berdasarkan variasi pengujian melalui standard
ASTM D-664. Bagaimanapun, korosi NAC ini dikaitkan dengan aliran hidrokarbon yang berada pada temperatur tinggi dengan keadaan vakum yang tidak mengandung kandungan air bebas.

4. TAN (Total Acid Number) dari minyak mentah dapat menyebabkan ambiguïtas karena jenis asam memiliki interval dari titik didih dan cenderung terkonsetrasi pada satu titik potong titik didih. Oleh karena itu, NAC ditentukan oleh tingkat keasaman sebenarnya dari aliran aktual, bukan muatan dari minyak mentah.

5. Variasi jenis asam yang meliputi kelompok napthenic acid dapat menyebabkan tingkat korosivitas yang berbeda.

6. Metode prediksi korosi jenis ini yang telah dikembangkan tidak dapat diaplikasikan secara luas untuk mengorelasikan laju korosi dengan variasi penyebab yang mempengaruhinya.

7. Sulfur menghasilkan pembentukan iron sulfide dan memiliki efek sebagai inhibitor pada NAC.

8. Napthenic acid menghilangkan lapisan protektif dari kerak iron sulfide pada permukaan logam.

9. NAC dapat menjadi masalah khusus dengan kadar sulfur yang sangat rendah pada crude oil serendah di angka 0.10 wt %

11. Napthenic acid hancur oleh reaksi katalisator di downstream hydroprocessing dan pada unit FCCU.

13. Korosi jenis ini dominan terjadi akibat pengaruh aliran fasa liquid dan gas, apda area yang tinggi turbulensinya dam pada menara kolom distilasi yang mana uap panas terkondensasi membentuk titik-titik cair.
BAB VI
KESIMPULAN DAN SARAN

5.1 Kesimpulan
Kesimpulan yang didapat selama kegiatan kerja praktik dilaksanakan adalah sebagai berikut.

1. Sumber daya manusia yang handal, berkualitas dan professional sangat dibutuhkan di dunia kerja agar permasalahan yang ada di dunia kerja dapat diselesaikan dengan baik, tepat dan juga efektif.

2. Gambaran dari dunia kerja yang saya adalah adalah seputar kedisiplinan, kerja sama tim dan juga saling menghormati. Semua pekerja mempunyai peran dan tanggung jawabnya masing-masing dimana hasil kerjanya saling berkaitan satu dengan yang lain.

3. Kemampuan untuk berfikir kritis, kreatif dan communication skills sangat dibutuhkan di dunia kerja sehingga dapat pekerja dapat menyelesaikan persoalan yang membutuhkan berbagai disiplin ilmu dengan baik dan tepat dalam satu tim.

4. Dengan perubahan desain fluida proses, laju korosi yang dialami oleh heat exchanger 11-E-108 sudah berada pada tingkat menengah dan bernilai 0,38 mm/tahun pada shell dan laju korosi pada tube bernilai 0,45 mm/tahun dibandingkan dengan laju korosi awal sekitar 0,08 mm/tahun pada minyak minas dan sekitar 0,64 mm/tahun pada minyak duri.

5. Konduktivitas termal suatu material akan mempengaruhi nilai heat transfer dari suatu alat penukar panas. Selain itu karakteristik fluida, temperatur masuk dan keluar, dan spesifikasi suatu heat exchanger juga akan mempengaruhi nilai heat transfer material tersebut.

5.2 Saran
Saran yang dapat diberikan dari penulis setelah menyelesaikan kegiatan kerja praktik adalah sebagai berikut.

1. Pihak Universitas Pertamina sebaiknya melakukan persiapan yang lebih baik lagi sehingga mahasiswa tidak kebingungan mengenai pedoman kerja praktik dan pencapaian yang harus dicapai selama kegiatan kerja praktik dilaksanakan.

2. Penunjukan pembimbing kerja praktik sebaiknya dilaksanakan sebelum mahasiswa melakukan kegiatan kerja praktik agar mahasiswa dapat melakukan konsultasi atau laporan sedini mungkin ketika kegiatan kerja praktik dimulai.

DAFTAR PUSTAKA

API 581 RP 3rd April 2016 Risk-Based Inspection Methodology

Heat Exchanger. Diakses pada Juni 2019, dari https://classes.engineering.wustl.edu/mase-thermal-lab/me372b5.htm
SURAT KETERANGAN
Nomor: 0097/UP-DKN4/SKET/V/2019

Yang bertanda tangan di bawah ini:
Nama : Dr. Eng. Purwo Kadarso, S.T., M.Eng.
NIP : 116113
Jabatan : Ketua Program Studi Teknik Mesin

Menerangkan bahwa mahasiswa berikut:
Nama : M. Bima Sugihartono
NIM : 102216034
Program Studi : Teknik Mesin

Akan melaksanakan Kerja Praktik di:
Instansi : PT. Pertamina RU VI
Alamat : Jalan. Raya Balongan Km. 9 Indramayu 45217
Tema KP : Analisis Pengoperasian dan Perawatan Komponen Mesin

Demikian Surat Keterangan ini dikeluarkan untuk dapat dipergunakan dengan penuh tanggung jawab.

Jakarta, 14 Mei 2019
a.n. Dekan Fakultas Teknologi Industri
Ketua Program Studi Teknik Mesin

Dr. Eng. Purwo Kadarso, S.T., M.Eng.
NIP. 116113

UNIVERSITAS PERTamina
FAKULTAS TEKNOLOGI INDUSTRI
Jl. Teuku Nyak Arief, Simprug, Kebayoran Lama,
Jakarta Selatan 12220, Telp + 6221 29044308
www.universitaspertamina.ac.id
PERTAMINA

SURAT KETERANGAN SELESAI KERJA PRAKTIK

Yang bertanda tangan dibawah ini:
Nama : Hari Fridana
Nomor Pegawai : 750555
Jabatan : Engineer Stationary Inspection
Instansi : PT. PERTAMINA (Persero) RU VI Balongan
Alamat Instansi : Jalan Balongan, Indramayu, Jawa Barat

Selaku pembimbing instansi, menyatakan bahwa mahasiswa berikut:
Nama : Muhammad Bima Sugihartono
NIM : 102216034
Program Studi : Teknik Mesin Universitas Pertamina

Telah menyelesaikan kerja praktik di:
Instansi : PT. PERTAMINA (Persero) RU VI Balongan
Bagian : Stationary & Statutory Inspection Engineer

Demikian surat keterangan ini dibuat untuk dapat dipergunakan secara bertanggung jawab.

Indramayu, Juli 2019
Pembimbing Institusi

[Signature]

Hari Fridana
NIP. 750555
<table>
<thead>
<tr>
<th>No.</th>
<th>Name</th>
<th>Phone</th>
<th>Email</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Belum / Periode PKL: 17 June 2019 - 17 June 2019
Jurusan / Fakultas: Teknik Teknik / Teknik Permanen
Daftar Mahasiswa
DAFTAR HADIR MAHASISWA

JURUSAN / UNIVERSITAS : Teknik Mesin / Univ. Pertamina

BULAN / PERIODE PKL : 17 Juli 2019 s/d 17 Agustus 2019

<table>
<thead>
<tr>
<th>NO.</th>
<th>N I M</th>
<th>NAMA MAHASISWA</th>
<th>TGL.</th>
<th>17</th>
<th>18</th>
<th>19</th>
<th>20</th>
<th>21</th>
<th>22</th>
<th>23</th>
<th>24</th>
<th>25</th>
<th>26</th>
<th>27</th>
<th>28</th>
<th>29</th>
<th>30</th>
<th>31</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
<th>12</th>
<th>13</th>
<th>14</th>
<th>15</th>
<th>16</th>
<th>17</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>102294434</td>
<td>Muhammad Ihsan Sugiharto</td>
<td></td>
<td>P</td>
<td>P</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
</tr>
</tbody>
</table>

| NO. | NO. FEK | PEMBIMBING PKL | TGL. | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | 25 | 26 | 27 | 28 | 29 | 30 | 31 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 |
|-----|---------|------------------|------|
| 1 | 756656 | Hari Fridana | | P | |
| 2 | | | |
| 3 | | | |
| 4 | | | |

Mengetahui :

[Signature]

Ketua :

[Signature]

Dibuat : 30 Juli 2019

At. Man. I.C BP RU VI

[Signature]

Ketua :

[Signature]
LEMBAR BIMBINGAN KERJA PRAKTIK

Nama : M. Bima Sugiharto
NIM : 102216034
Program Studi : 102216034

<table>
<thead>
<tr>
<th>No.</th>
<th>Hari/Tanggal:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Hal yang menjadi perhatian:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Konsultasi Sebelum dimulainya kegiatan kerja praktik di PT. PERTAMINA (PERSERO) RU VI Balongan</td>
</tr>
<tr>
<td>Paraf Pembimbing:</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>No.</th>
<th>Hari/Tanggal:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Hal yang menjadi perhatian:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Konsultasi Judul Tugas Khusus Laporan Kerja Praktik</td>
</tr>
<tr>
<td>Paraf Pembimbing:</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>No.</th>
<th>Hari/Tanggal:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Hal yang menjadi perhatian:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Konsultasi Materi Presentasi Seminar Kerja Praktik</td>
</tr>
<tr>
<td>Paraf Pembimbing:</td>
</tr>
<tr>
<td>No.</td>
</tr>
<tr>
<td>-----</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>No.</th>
<th>Hari/Tanggal:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Hal yang menjadi perhatian:</td>
</tr>
<tr>
<td></td>
<td>Revisi Laporan Kerja Praktik</td>
</tr>
<tr>
<td></td>
<td>Paraf Pembimbing:</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>No.</th>
<th>Hari/Tanggal:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Hal yang menjadi perhatian:</td>
</tr>
<tr>
<td></td>
<td>Paraf Pembimbing:</td>
</tr>
</tbody>
</table>